翻訳と辞書 |
Transcendental function : ウィキペディア英語版 | Transcendental function A transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function.〔E. J. Townsend, ''Functions of a Complex Variable'', 1915, (p. 300 )〕〔Michiel Hazewinkel, ''Encyclopedia of Mathematics'', 1993, (9:236 )〕 (The polynomials are sometimes required to have rational coefficients.) In other words, a transcendental function "transcends" algebra in that it cannot be expressed in terms of a finite sequence of the algebraic operations of addition, multiplication, and root extraction. Examples of transcendental functions include the exponential function, the logarithm, and the trigonometric functions. ==Definition== Formally, an analytic function ƒ(''z'') of one real or complex variable ''z'' is transcendental if it is algebraically independent of that variable.〔M. Waldschmidt, ''Diophantine approximation on linear algebraic groups'', Springer (2000).〕 This can be extended to functions of several variables.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Transcendental function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|